
Solution	for	Packing	Biscuits
We	say	that	a	value	of	 	is	good	if	it	is	possible	to	pack	 	bags,	each	of	 	total	tastiness.

Subtask	1

We	 proceed	 by	 checking	 every	 value	 of	 ,	 noting	 that	 .	 For	 each	 value	 of	 ,	 we	 use	 the
`greedy	coin	change'	algorithm	to	decide	if	it	is	good	or	not.

Implementing	this	naively	gives	a	runtime	of	 	operations.	There	are	two	ways	to	speed	it
up.

One	possible	way	is	to	remove	 	coins	at	a	time	instead	of	removing	them	one	by	one.

The	other	way	is	to	check	for	values	of	 	at	most	 ,	so	that	we	have	less	values	of	 	to	check	in
the	even	that	 	 is	 large.	However,	contestants	will	have	to	return	1	immediately	if	 	 is	 larger	than	

	to	avoid	actually	packing	 	empty	bags!

Subtask	2

We	begin	with	the	following	observation:

If	 ,	the	solution	remains	unchanged	if	we	decrease	 	by	2	and	increase	 	by
1.

Using	this	observation,	we	may	combine	smaller	biscuits	into	bigger	ones	such	that	 .

A	second	observation	is	the	following:

Suppose	 	 for	 some	 .	 Let	 	 be	 any	 integer,	 we	 perform	 division	 with	 remainder	 and
write	 .	Then	 	is	good	if	and	only	if	 	is	good	and	 	is	good.

Suppose	 	for	all	 .	Then	for	any	integer	 ,	 	is	good	if	and	only	if	the	total	tastiness	is
at	least	 .

Using	 this	 observation,	 we	 may	 split	 the	 input	 into	 consecutive	 segments	 of	 non-zero	 values.	 The
final	answer	is	the	product	of	the	answers	individual	segments.

Subtask	3

Similar	to	the	previous	subtask,	if	 ,	we	may	decrement	 	by	2	and	increase	

Biscuits (1 of 3)

by	1.

We	 now	 proceed	 by	 dynamic	 programming.	 Let	 	 be	 the	 answer	 if	 we	 replace	
	by	0	and	increment	 	by	 .

We	obtain	the	following	recurrence	relation:

To	explain	the	relation,	let	 	be	the	set	of	all	valid	 	when	 	are	replaced	by	0
and	 	incremented	by	 .

If	 	is	a	multiple	of	 ,	then	the	biscuits	of	tastiness	 	must	be	used	in	pairs.	We	therefore	merge
pairs	of	biscuits	to	make	biscuits	of	tastiness	 .

If	 	is	not	a	multiple	of	 	but	not	a	multiple	of	 ,	then	we	need	to	use	 	biscuits	of	tastiness	 .
The	remaining	 	biscuits	must	be	used	up	in	pairs.

If	 	is	not	a	multiple	of	 ,	then	 	cannot	be	good.

Subtask	4

Define

to	be	the	total	tastiness	the	first	 	types	of	biscuits.

We	need	another	observation:

Let	 .	Then	 	is	good	if	and	only	if	 	and	 	is	good.

The	 forward	 direction	 is	 clear.	 We	 will	 justify	 the	 backward	 direction.	 For	 simplicity,	 assume	
.	Since	 	is	good,	consider	some	way	to	pack	them,

remove	these	biscuits	from	our	collection.

We	 need	 to	 pack	 the	 remaining	 biscuits	 into	 	 packs	 of	 	 each.	 We	 do	 so	 by	 merging	 smaller
biscuits	into	bigger	ones-	whenever	there	are	two	biscuits	of	tastiness	 	for	some	 ,	we	replace
them	 with	 a	 single	 biscuit	 of	 tastiness	 .	 It	 can	 be	 shown	 that	 we	 will	 end	 up	 with	 at	 least	
biscuits	of	tastiness	 	each	after	the	merging.

We	now	have	an	efficient	way	to	enumerate	all	the	solutions.	Let	 	be	the	set	of	good	values	which
are	at	most	 .	We	then	have

Biscuits (2 of 3)

We	can	now	explicitly	list	out	all	elements	of	 .	Thus	the	time	taken	for	a	single	query	is	linear	in
the	size	of	the	answer	returned.

Subtask	5

Let	 	be	the	number	of	possible	 	which	are	less	than	 .	The	following	recurrence	relation	solves
the	problem:

Let	 .	Then

with	the	initial	values	 	for	all	 	and	 .

By	using	a	hash	table	to	store	all	previously	computed	values,	this	algorithm	runs	in	 	time.

The	time	complexity	is	justified	by	the	fact	that	once	 	are	computed,
we	only	need	 	time	to	compute	 .

Biscuits (3 of 3)

