f/%y ore

20 /JE 20 32NP INTERNATIONAL biscuits
A OLYMPIAD IN INFORMATICS
= 101 Day 2 Tasks

G English (ISC)

Solution for Packing Biscuits

We say that a value of y is good if it is possible to pack x bags, each of y total tastiness.

Subtask 1

We proceed by checking every value of y, noting that y < 10%. For each value of Yy, we use the
“greedy coin change' algorithm to decide if it is good or not.

Implementing this naively gives a runtime of ~ 10° - = operations. There are two ways to speed it
up.

One possible way is to remove x coins at a time instead of removing them one by one.

The other way is to check for values of y at most 105/111, so that we have less values of y to check in
the even that x is large. However, contestants will have to return 1 immediately if x is larger than
10° to avoid actually packing empty bags!

Subtask 2

We begin with the following observation:

e If a[i] > 3, the solution remains unchanged if we decrease a[i] by 2 and increase a[i + 1] by
1.

Using this observation, we may combine smaller biscuits into bigger ones such that a[i] € {0, 1, 2}.
A second observation is the following:

e Suppose afi] = 0 for some i. Let y be any integer, we perform division with remainder and
write y = 2¢ - ¢ + 7. Then y is good if and only if 2¢ - g is good and r is good.

e Suppose a[i] = 0 for all . Then for any integer y, y is good if and only if the total tastiness is
at least y.

Using this observation, we may split the input into consecutive segments of non-zero values. The
final answer is the product of the answers individual segments.

Subtask 3

Similar to the previous subtask, if ali] > x + 2, we may decrement ali] by 2 and increase a[i + 1]

Biscuits (1 of 3)

by 1.

We now proceed by dynamic programming. Let f(n,i) be the answer if we replace
al0],a[l],...,afi — 1] by 0 and increment ali] by n.

We obtain the following recurrence relation:

(1250 + 1) n+ali] <z
(Ln+2a[i]J7i+1)_|_f(Ln+a£i]*xJ,i+1) n—l—a[z] >z

To explain the relation, let S be the set of all valid y when a[0], a[1],...a[i — 1] are replaced by 0
and a[t] incremented by n.

= n,1) = !
£(0,60) =1, f(n,) {f

If y is a multiple of 2+1 then the biscuits of tastiness 2¢ must be used in pairs. We therefore merge
pairs of biscuits to make biscuits of tastiness 2¢+1.

If y is not a multiple of 27! but not a multiple of 2¢, then we need to use z biscuits of tastiness 2°.
The remaining a[i] + n — x biscuits must be used up in pairs.

If v is not a multiple of 2¢, then y cannot be good.

Subtask 4

Define

i

sli] =) ali] - 2
j=0
to be the total tastiness the first ¢ 4 1 types of biscuits.
We need another observation:

o Let2 <y < 27! Then y is good if and only if s[i] > z -y and y — 2" is good.

The forward direction is clear. We will justify the backward direction. For simplicity, assume
ali +1] =ali + 2] = ... = alk — 1] = 0. Since y — 2" is good, consider some way to pack them,
remove these biscuits from our collection.

We need to pack the remaining biscuits into = packs of 2! each. We do so by merging smaller
biscuits into bigger ones- whenever there are two biscuits of tastiness 27 for some j < 1, we replace
them with a single biscuit of tastiness 27!, It can be shown that we will end up with at least z
biscuits of tastiness 2¢ each after the merging.

We now have an efficient way to enumerate all the solutions. Let A; be the set of good values which
are at most 2¢. We then have

A = A U{yly — 2° € A; and s[i]/z > y}

Biscuits (2 of 3)

We can now explicitly list out all elements of A;. Thus the time taken for a single query is linear in
the size of the answer returned.

Subtask 5

Let g(n) be the number of possible y which are less than n. The following recurrence relation solves
the problem:

o Let2! < n <2 Then
g(n) = g(2') + g(min(n, 1 + s[i]/z) - 2
with the initial values g(n) = O foralln < 0and g(1) = 1.
By using a hash table to store all previously computed values, this algorithm runs in O(k2) time.

The time complexity is justified by the fact that once g(2°), g(2), g(22),...g(2""') are computed,
we only need O(k) time to compute g(2%).

Biscuits (3 of 3)

