## Comparing Plants (plants)

Hazel the botanist visited a special exhibition in the Singapore Botanical Gardens. In this exhibition, $n$ plants of distinct heights are placed in a circle. These plants are labelled from 0 to $n-1$ in clockwise order, with plant $n-1$ beside plant 0 .

For each plant $i(0 \leq i \leq n-1)$, Hazel compared plant $i$ to each of the next $k-1$ plants in clockwise order, and wrote down the number $r[i]$ denoting how many of these $k-1$ plants are taller than plant $i$. Thus, each value $r[i]$ depends on the relative heights of some $k$ consecutive plants.

For example, suppose $n=5, k=3$ and $i=3$. The next $k-1=2$ plants in clockwise order from plant $i=3$ would be plant 4 and plant 0 . If plant 4 was taller than plant 3 and plant 0 was shorter than plant 3 , Hazel would write down $r[3]=1$.

You may assume that Hazel recorded the values $r[i]$ correctly. Thus, there is at least one configuration of distinct heights of plants consistent with these values.

You were asked to compare the heights of $q$ pairs of plants. Sadly, you do not have access to the exhibition. Your only source of information is Hazel's notebook with the value $k$ and the sequence of values $r[0], \ldots, r[n-1]$.

For each pair of different plants $x$ and $y$ that need to be compared, determine which of the three following situations occurs:

- Plant $x$ is definitely taller than plant $y$ : in any configuration of distinct heights $h[0], \ldots, h[n-1]$ consistent with the array $r$ we have $h[x]>h[y]$.
- Plant $x$ is definitely shorter than plant $y$ : in any configuration of distinct heights $h[0], \ldots, h[n-1]$ consistent with the array $r$ we have $h[x]<h[y]$.
- The comparison is inconclusive: neither of the previous two cases applies.


## Implementation details

You should implement the following procedures:

```
void init(int k, int[] r)
```

- $k$ : the number of consecutive plants whose heights determine each individual value $r[i]$.
- $r$ : an array of size $n$, where $r[i]$ is the number of plants taller than plant $i$ among the next $k-1$ plants in clockwise order.
- This procedure is called exactly once, before any calls to compare_plants.

```
int compare_plants(int x, int y)
```

- $x, y$ : labels of the plants to be compared.
- This procedure should return:
- 1 if plant $x$ is definitely taller than plant $y$,
- -1 if plant $x$ is definitely shorter than plant $y$,
- 0 if the comparison is inconclusive.
- This procedure is called exactly $q$ times.


## Examples

## Example 1

Consider the following call:

```
init(3, [0, 1, 1, 2])
```

Let's say the grader calls compare_plants ( 0,2 ). Since $r[0]=0$ we can immediately infer that plant 2 is not taller than plant 0 . Therefore, the call should return 1 .

Let's say the grader calls compare_plants $(1,2)$ next. For all possible configurations of heights that fit the constraints above, plant 1 is shorter than plant 2 . Therefore, the call should return -1 .

## Example 2

Consider the following call:

```
init(2, [0, 1, 0, 1])
```

Let's say the grader calls compare_plants (0, 3). Since $r[3]=1$, we know that plant 0 is taller than plant 3 . Therefore, the call should return 1.

Let's say the grader calls compare_plants (1, 3) next. Two configurations of heights $[3,1,4,2]$ and $[3,2,4,1]$ are both consistent with Hazel's measurements. Since plant 1 is shorter than plant 3 in one configuration and taller than plant 3 in the other, this call should return 0 .

## Constraints

- $2 \leq k \leq n \leq 200000$
- $1 \leq q \leq 200000$
- $0 \leq r[i] \leq k-1$ (for all $0 \leq i \leq n-1$ )
- $0 \leq x<y \leq n-1$
- There exists one or more configurations of distinct heights of plants consistent with the array
$r$.


## Subtasks

1. ( 5 points) $k=2$
2. (14 points) $n \leq 5000,2 \cdot k>n$
3. (13 points) $2 \cdot k>n$
4. (17 points) The correct answer to each call of compare_plants is 1 or -1 .
5. (11 points) $n \leq 300, q \leq \frac{n \cdot(n-1)}{2}$
6. ( 15 points) $x=0$ for each call of compare_plants.
7. (25 points) No additional constraints.

## Sample grader

The sample grader reads the input in the following format:

- line 1: $n k q$
- line 2: $r[0] r[1] \ldots r[n-1]$
- line $3+i(0 \leq i \leq q-1)$ : $x \quad y$ for the $i$-th call to compare_plants

The sample grader prints your answers in the following format:

- line $1+i(0 \leq i \leq q-1)$ : return value of the $i$-th call to compare_plants.

